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Abstract. A coding of functions that allows a genetic algorithm to mi-
nimize functionals without analytic trial functions is presented and im-

plemented for solving numerically some instances of variational problems
from physics.

1 Introduction

The genetic algorithm (GA) [1,2] has become popular as as a reliable computer-
ized method for solving problems from a wide range of domains, such as function
optimization, handling them even in nonlinear, multidimensional search spaces.
A conventional GA is a stochastic search method inspired in natural selection
and the darwinian idea of the survival of the fittest in which the possible solu-
tions of a problem (metaphorically the points in the search space) are coded as
fixed-length strings of characters of an alphabet (usually binary) that resemble
the chromosomes of alive beings. A GA evolves a population of search “points”
chosen randomly appliying iteratively on them operators of selection, crossover
and mutation for creating new populations (generations).

Selection consists in giving a proportionally bigger number of offspring to
the fitter individuals so the characteristics that make them better prevail. The
combination of this characteristics for generating new individuals is achieved
through crossover, that is the interchange of portions of the strings of characters
of two individuals paired randomly, giving birth to two new individuals for the
next generation. In its simplest form in a GA all individuals are removed (die)
after reproduction.

The last iterative step consists in making random changes to the strings of
individuals chosen with a small probability, which is named mutation after the
natural process that it resembles. After some generations the individuals tend to
concentrate around the fittest “points” in the search space, so it can be said that
all of the process was a way of optimizing the function employed to determine
the fitting.

The predominant kind of optimization problems attacked with GAs to date
have been those in which the strings of an alphabet that make the evolving pop-
ulation code literally points in a multidimensional space, where each dimension
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represents a parameter or variable of interest. When the potential solutions of a
problem are functions and not points, as it is the.case for variational problems
3], the most popular GA approach developed to date has been that of choosing
a set of analytic trial functions and combining them in the fittest way. There are
two main ways for doing so: weightening them, case where a string of weights is
an individual, or using genetic programming (GP) [4] where the trial functions
and the mathematical operators needed for combining them are the alphabet
that gives shape to each member of the population.

In this paper a way to directly represent numerical functions as strings (indi-
viduals) of a GA is presented, followed by its successful implementation on some
instances of variational problems from physics.

2 Angular Genes are not Real Genes

Lets take ® as the alphabet chosen to code individuals. In the literature of GAs
(without taking GP into account) two main alphabets are usually discussed,
the so called binary genes ® = 0,1 and the real genes ® € R. Even when
there is not any special restriction on & in the definition of the GA, only the
implicit warning that it must facilitate the heredity of the fittest characteristics
for obtaining acceptable results, it is curious how the attention in the field has
been biased toward the binary and real alphabets. One of the goals of this paper
is to emphazise the importance of focusing attention in other alphabets, in the
extra information that is possible to get from them, specifically in an angular
one, which will be called from now on angular genes. Aren’t angular genes just
real genes? The distinction made is based in the commonly forgotten fact that
angles are not numbers [5], they are an entity by themselves.

The angular genes code piecewise functions as a string a of the angles between
each consecutive pair of linear segments. For any combination of angles it is
possible to scale and rotate the collection to fit the initial and final desired
values. Taking y; = y(z1) and yn = y(zn) as the initial and final values of the
piecewise function yx = y(z) to be represented in the range (z1,zN) With N -1
linear segments and k = 2,3,..., N, the coding is defined as follows:

R=+(yn —n)? + (zn — 71)?

B = tan"}(yn — y1)/(zn — 1))
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k i-1
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Where —0 < oj < 0 and s is a string of real numbers 0 < s; < 1 that
codes the relative length of each linear segment and together with « forms an
individual. Having (1) and (2) we can further define:

Az; = (R/r) S; COS iaj -v+4
7=1

Ay; = (R/,.) sisin zi:aj -v+0

i=1
Y; = tan Zaj—'7+ﬁ 3)
i=1
yi' = tan(qiq1)(1 + YiYis1)/Az; (4)

Taking ©@; = 6(z;) as the evaluation in z; of the function that minimizes the
functional, for the best found individual we have:

-1 Ei1 - 6;
Qp1 — tan (1 ) 919:-*.1)
Equation (5) is a measure of the error of the best approximation found that
clarifies the influence of a proper choice of o according to the problem. If ¢ is
too small the error can be surely surpassed but if it is too big the search space

grows.
Ignoring the differences in a tenth of o and 1 the search space explored has

a size of approximately 10V—1 x 20N-1,

< (5)

3 Examples

The presented coding was used to solve instances of four well known variational
problems from physics. In each case the population used had a size of 100 with
N =101, crossover based in interchanging angles with probability of 1 from ran-
domly paired individuals after an angle chosen at chance (one point crossover),
changing randomly (mutating) angles in the range [—o, 0] with probability of
0.05, and 500 generations. The number of runs made for all cases was ten. For
the three first cases it was not needed the help of s, so s; = 1, but not for the
last where 0 < s; < 1. The algorithm was written in MATLAB and implemented
in a personal computer with Pentium(R) 4 CPU, 2.4GHz, 448 MB RAM.
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3.1 Curve of Shortest Distance in the Euclidian Plane

The functional to minimize is

(@) + (d)?

T1,V1
whose known solution [3] is the straight line y = ax + b. For the case z; =
y1 = yny = 0, §y = 1 with minimum J = 1, the average solution found by the
algorithm with ¢ = 0.0057 was J = 1+ 1.66 x 10~° with standard deviation of
1.2 x 1076,

3.2 Curve of Minimum Revolution Area

Considering two paralel coaxial wire circles to be connected by a surface of
minimum area that is generated by revolving a curve y(z) about the z-axis, the
functional to minimize is

INHYUN

J= 2my/(dz)? + (dy)?

T,y
whose known solution [3] is the catenoid y = cosh(az + b)/a. For the case —z; =
zy = 0.5, y1 = yn = 1 with minimum J = 5.9917, the average solution found
by the algorithm with o = 0.0057 was J = 5.9919 with standard deviation of
1.4 x 1075,

3.3 Fermat’s Principle

According to Fermat’s principle light will follow the path y(z) for which

TNYN

J = n(z,y)V/(dz)? + (dy)?

T,y

is minimum when n is the index of refraction. When n = e¥ the solution is
y = In(a/ cos(z + b)). For the case —z, =zy =1, y; = YN = 1 with minimum
J = 4.5749, the average solution found by the algorithm with o =

= 0.0lm was
J = 4.5752 with standard deviation of 5.2 x 105,
3.4 The Energies of the Hydrogen Atom
The hydrogen atom [6] is the quantum system made of a proton and an elec-

tron whose energies, without taking into account the degeneracies, can be found
minimizing the functional

1 [ [h2 — 1\K2 2
Bam [ |G (RN
cJo 21 2ur? Amggr /]

. e 00

with ¢ = jp u?,dr,. Uun(r) = rRn, un(0) = 0, R2 is the probability distribution

for the radial location of the electron, q is its charge, H=memy/(me 4+ m,) the
e P
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reduced mass of the system, o the permitivity of free space and h the Planck’s
constant divided by 2m. The energies of the system are ruled by the equation
E, = -13.6052eV/n2.

The algorithm was used to find the three first energies of the system. In this
case the result found by each run depends strongly in a right choice of ry such
that un(rn)? = 0. For the ground state E; = —13.6052 eV the best found was
about eight times the Bohr radius, the average solution found by the algorithm
was Ey = —13.5987 eV with a standard deviation of 0.028 eV. For n = 2, E; =
—3.4014eV, the best choice for ry made was about fifteen times the Bohr radius
and the average solution found by the algorithm was E, = —3.42467 eV with
standard deviation of 0.005eV. For n = 3, E; = —1.5117 eV, the best choice
for rny made was about twenty five times the Bohr radius, reaching an average
solution of E3 = —1.5103 eV with standard deviation of 0.001 eV. In the three
cases o = 0.0057.

4 Conclusions and Future Work

The examples shown were chosen with demostrative purposes. Better aproxima-
tions for specific cases can be reached increasing N and improving the choice
of o, with the extra computational effort it implies. Even thought that it was
showed the efficiency of the coding to minimize the functionals presented it will
be necessary the development of a theory of difficulty to give a more concise
explanation of the kind of problems that could be hard to solve using it, like
those already existent for binary genes like deception [1,2] and NK landscapes
[7]. Another useful future development will be that of general ways of handling
problems with constraints. An important potential application of the kind of
genetic algorithm presented would be in those cases where there are not analytic
solutions available, like in many quantum systems.
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